Equivalent transformation of simple inequalities
When a > 1
The inequality sign is preserved.
Example 1
Rozwarte inequality:
Solutions:
A function is increasing, therefore equate indices,
Answer:
If 0 < a < 1
The inequality sign is reversed.
Example 2
Rozwarte inequality:
Solutions:
Function
Answer:
More complex exponential inequalities
With the help of equivalent transformations
With the help of equivalent transformations (scheme the solution of model equations) given inequality reduces to the known inequality of the form (square, fractional or other). After the solution of the resulting inequality we come to the simplest exponential inequalities.
Example 3
Rozwarte inequality:
Solutions:
Substitution gives the inequality
junctions which or
So
(rozvytku no), or where that is
Answer:
Using the General method of intervals
Apply the General method of intervals,
Example 4
Rozwarte inequality:
Solutions:
Solve the inequality by the method of intervals. The given inequality weselna bumps
We denote
- DHS:
- The zeros of the function:
- Because the function is increasing, the value of zero, it takes only one point of the region definition:
- Denote the zero function on DHS, find the sign in each of the intervals to which DHS Rotblat, and record the interchange of bumps
Answer:
The solution to inequalities is very similar to the model equations, so if You haven't found a suitable Roseanna irregularities, see exponential equations.