Definition: the Function of the form where n is any real number, is called power function
Properties of the power function (in
)
a) n — natural b) n is an integer WMA
c) n is not a whole
- Scope
- Multiple value
- Parity, odd parity
- The frequency
- The intersection with the coordinate axes
- Derivative
- The increase and decrease of
- Extrema
- Asymptotes
- Convexity and points of inflection
- A special case
a)
b)
c) when
when
a) when n doubles
when n is odd
b) when n doubles
when n is odd
c) when
when
a),b) when n doubles — doubles
when n is odd — odd
c) neither even nor odd
not periodic
a)
b) no
c) when
when
— no
a) when n doubles — decreases,
increases
when n odd — is growing
b) when n doubles — increases
— decreases
when n odd
— comes
— comes
c) when — growing
when it
comes
a) when n doubles
when n is odd — no
b) no
c) when
when
— no
a) no
b)
c) while — not
when
a) when n doubles — bulge down
when n is odd,
—
;
—
; 0 — inflection point
b) when n doubles — —
;
—
when n is odd —
—
;
—
c) when —
;
—
when
If ,
(when
)
![Степенева функція](http://cdn.cubens.com/contents/pictures/power-function-1.png)
Graphs of power functions
![Степенева функція](http://cdn.cubens.com/contents/pictures/power-function-2.png)
![Степенева функція](http://cdn.cubens.com/contents/pictures/power-function-3.png)
![Степенева функція](http://cdn.cubens.com/contents/pictures/power-function-4.png)
![Степенева функція](http://cdn.cubens.com/contents/pictures/power-function-5.png)
(green)
![Степенева функція](http://cdn.cubens.com/contents/pictures/power-function-6.png)
(green)
![Степенева функція](http://cdn.cubens.com/contents/pictures/power-function-7.png)