Definition: Logarithmische Funktion nennt man eine Funktion der Art , wo
Eigenschaften der logarithmischen Funktionen
Die Funktion weder gerade noch ungerade
bei
Schnittpunkt mit der Achse nicht ( für Definitionsbereich)
Die Funktion ist stetig und диференційовна im gesamten Definitionsbereich
wenn bei
wenn bei
Extrema nicht
beim — wachsen
bei — kommt
Direkte — vertikale асимптота
Funktionen und zueinander Umkehrfunktionen, also Grafiken sind symmetrisch bezüglich der geraden
- Das Gebiet
- Mehrfacher Wert
- Parität, ungerade
- Der Schnittpunkt der Achsen des
- Kontinuität und Ableitung
- Zwischenräume Zeichen der Beständigkeit
- Aufsteigend und absteigend
- Asymptoten
Grafiken logarithmische Funktionen